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DIVISION IN ALGEBRAS OF INFINITELY DIFFERENTIABLE FUNCTIONS

Walter Rudin

I. Introduction

1.1 If My My, M,, ... are positive numbers, we denote by C{Mn} the class
of all complex functions { on the real line for which there exist constants

B = ﬁf and B = Bf such that
n
) 10"l < g™ m=0,1,2...) ,

where D =d/dx and I |l is the supremum norm: £l = sup|fEx) I, -0 <x <00,
The class of all members of C{Mn} which are periodic, with period 2w,

will be denoted by Cp{Mn,}.

The sequence {Mn} is said to be logarithmically convex if {log Mn} is

2 —
convex, i.e., if M <M M for n=1,2,3,... . If {Mn} is the largest

n+l
logarithmically convex minorant of {Mn}’ then C{Mn} = C{IT/In} and

c {M } = c_{M_}. This follows from the inequalities
pin p''n
r-n  n-p
2) D1l <2 DPelFP D'l O<p<n<r)

which are due to Kolmogoroff [6; pp. 21, 216].
Hence we may assume, without loss of generality, that {Mn} is logarithmically
convex; unless the contrary is stated, this assumption will be made from now on,

Since C{Mn} =C{ Mn}’ for every positive constant \, we may also assume

Sponsored by the Mathematics Research Center, United States Army, Madison,
‘Wisconsin under Contract No.: DA-11-022-ORD-2059.
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that M. = 1. It will be convenient to define A_ =1 and

0 0
Mn 1/n
(3) An= TS n=1,23,...) .
1. 2. Leibnitz' formula
n S n, g n-j
(4) D(f-g)=2(j)Df-D g
i=0

shows that each C{Mn} is an algebra, under pointwise addition and multiplication:
the above assumptions on {Mn} show that MjMn-j < Mn if 0<j<n, and

therefore the inequalities || an ” < [31 Bnan and || Dng ” < |32 B; Mn imply

n . .
n n j n-j
Ip"¢- o)l < 'Zo (7)) 8,8/ MB,B M,

n . s
‘ n,.j_n-j _ n

1.3. The algebra C{Mn} is called quasianalytic if the zero-function is the only

member of C{Mn} such that an(xo) =0 for n=0,1,2,... , at some point X

Otherwise , C{Mn} is non-quasianalytic. The theorem of Denjoy and Carleman

([1], [6)) states that C{Mn} is quasianalytic if and only if

M
n
Mn+ 1

(6)

o8
n
8

_ n -1
Since {lgg Mn} is convex and M, =1, we see that (Mn/Mn+1) <M

’

so that the condition (6) implies

K 0

) ) MR
1

n
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that M0 = 1, It will be convenient to define AO =1 and

| Mn 1/n
(3) A =7 h=1,2,3,...) .
1.2. Leibnitz' formula
n n‘ n, Jj n-j
(4) D(f-g)=Z(j)Df°D g
20

shows that each C{M‘n} is an algebra, under pointwise addition and multiplication:
the above assumptions on {Mn} show that MjMn-j < Mn if 0<j<n, and

therefore the inequalities || an || < ﬁl Bnan and " Dng ” < ﬁz B; Mn imply

n : :
I n J n-j
ID*c - o)l < ‘20 () BBMB,B "M

(5) N
n,.j_n-j _ ‘ n
< B B,M_ j2=0(j )B/ B, = BB, (B + B,) M.

1.3. The algebra C{Mn} is called quasianalytic if the zero-function is the only

member of C{Mn} such that an(xo) =0 for n=0,1,2,... , at some point X

Otherwise , C{Mn} is non-quasianalytic, The theorem of Denjoy and Carleman

([1], [6]) states that C{Mn} is quasianalytic if and only if

00 Mn
(6) % =,
0 Mn+1
: o n -1
Since {log Mn} is convex and M, =1, we see that (Mn/Mn+1) < Mn ,

so that the condition (6) implies

0
(7) Y Mrzl/“ = o,
1



#273 -3-

To prove the converse we appeal to the inequality [7]

/n

E(alaz...an)l‘ <e Zan ,

valid for a, >0, and take a, = M, ,/M, .

i

Thus (7) is also a necessary and sufficient condition for quasianalyticity.

1.4. If 1/f e C{M_} whenever f ¢ c{M_} and inf l£Gx) | > 0, we call ci{m_}
X

inverse-closed; a similar definition applies to Cp{Mn}'

The problem with which we are concerned, and which is solved in the present
paper, is the description of all inverse~closed non-quasianalytic algebras
C{Mn}. It turns out that they are precisely those for which there is a constant K

such that the inequalities
(8) A <KA

hold whenever s <n; here {An} is defined by (3).
The condition (8) is satisfied with K =1 precisely when {An} is an increasing

sequence. Accordingly, we shall call {An} almost increasing if (8) is satisfied

for some K< oo,
1.5. Actually, a more striking dichotomy exist than was indicated in the preceding

paragraph., Our main results may be summarized as follows:

THEOREM A. Suppose {An} is almost increasing, Then C{Mn} is inverse-closed.

Furthermore, if f ¢ C‘{Mn} and if ¢ is an analytic function in an open set which

contains the closure of the range of f, then ¢ o fe C{Mn} .

L
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THEOREM B. Suppose C{Mn} is non-quasianalytic and {An} is not almost

increasing. Then there exists an f ¢ Cp{Mn} and an entire function ¢ such that

‘ -1
(i) if N is any complex number, then (\ - f) is not in C{Mn} ;

(ii) ¢ ¢ f is mot in C{Mn}.
The symbol ¢ e f indicates the function defined by: (¢ o f)(x) = o(f(x)).

Since f is bounded, (i) shows that C{Mn} is not inverse-closed, by taking

In| > ||fl . Actually, (i) shows more: for some f ¢ Cp{Mn} the spectrum of £
(relative to the algebra Cp‘{Mn}) consists of the whole plane, although the range
of f is compact. We state the result for Cp{Mn} rather than for C{Mn} to
emphasize that the phenomenon (i) is not caused by the behavior of f near infinity,
but that it is present in non-quasianalytic algebras on the circle,

It would be interesting to extend Theorem B to quasianalytic classes,
1.6. The problem treated here has the following background, Let A be the class
of all functions on the circle whichare sums of absolutely convergent trigonometric
series, Katznelson ([4],[2]) proved that if ¢ is defined on the real line and if
¢ o feA forall real fe A, then ¢ must be analytic onthe line. Malliavin [5]
has proved that corresponding to every inverse-closed non-quasianalytic class
C{Mn} there is areal f ¢ A suchthat ¢ e f ¢ A only if ¢ ¢ C{Mn}. It is known
that the intersection of all non-quasianalytic classes is precisely the class
C{n!}, which consists of analytic functions ( aproof is included in Part IV).

If it were true that the intersection of all inverse-closed non-quasianalytic classes

is also C{n!} , then Malliavin's result would imply Katznelson's. But it is not so:
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THEOREM C. The intersection of all inverse-closed non-quasianalytic classes

is precisely the class C{(n log n)"}.

Since C{M } is a subclass of C{M } if and only if {(M /M )l/n}

bounded above [1;p.19] and since Stirling's formula implies that
1

nelogn. () * - w ,

we see that C{n!} is a proper subclass of C{(n log n)n}.

In particular, it follows that there exist non-quasianalytic algebras which are

not inverse-closed, a fact which seems to have escaped previous notice.

II. PROOF OF THEOREM A.

2.1, THEOREM. _Suppose A < KAn whenever s <n, for some fixed K. If

o, B, B are positive constants, if_

(1) "an"sﬁBnMn (n=0,1,2,...)
and if |f(x)| > o (-o <x <w), then

) ID"wall<ep™  @=0,1,2,...),

where ﬁl =2/c, Bl = BK( + 2B/0).

This is due to Malliavin [5]. We include the proof since the quantitative version
stated here is needed for Theorem 2, 3.
Proof. Choose ¢ so that 2Be = (1 - e)o, then choose {rn} so that BKAnrn= €

(n=0,1,2,...). Fix n, fix x_, and define

0’
an(xo)
Q(2) = f(xy) + Df(xo)z toov b ™z .
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For 1<s<n we have

ID°¢6x) /st < BB°AS < p(BKA )®
ana hence |z] <r implies

0

lQ(z)|>cr-ﬂZ(BKAr) >o-p) e
s=1 I

s

(3)
- o - —&e_‘ -

1 -¢

viq

The first n derivatives of Q at z =0 are equal to the first n derivatives of f

at x =x,. Hence D (l/f) (xO) = D (/Q)(0) , and Cauchy's formula gives

0

(®) D" (/1) tx, ;iH —d&

z|—rn z lQ(z)

‘We conclude from (3) and (4) that

nl _ 2 BKpn
n o'(e)Mn’
r

n

/a6 < £

which completes the proof,

2.2. LEMMA. Suppose {fp} is a sequence of functions on the real line which

converges pointwise to a function f, and which satisfies the inequalities

(5) IID“prsRn<oo (n=0,1,2,...; p=1,2,3,...)

Then we also have " an || < Rn for all n> 0,
Proof. Suppose that Djf exists and that Djfp - ]Z;f pointwise (for j = 0, this is

part of the hypothesis). Fix x and ¢ > 0, restrict y sothmt 0< |‘y - x| < ‘/Rj+2‘

Then , §
Dt (y) - Dt (x)

P p _ ot o y-x_Jj+2
© — D ) = ¥ )
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for some £ between x and y. Write (6) once more, with q in place of p,
and subtract the two equations. The right side is less than ¢ ; letting p,q = o,
the quotients on the left converge to the same limit, namely {Djf(y) - Djf(x) Y/ (y-x).

Hence {Dj+1fp(x)} is a Cauchy sequence. Let L be its limit, Then (6) gives

| Di(y) - D(x)
y-x

(7) -LISE

as soonas 0 < Iy - x| < e/Rj+2 . Thus Dj+lf exists and Dj"'lfp - D‘H'lf
pointwise,
The proof is completed by induction.

2.3, THEOREM. _Suppose f e C{Mn}, {An} is almost increasing, and ¢ is

analytic in an open set which contains the closure of the range of f. Then

bofe C{Mn}.
Proof. There exists I', a union of finitely many rectifiable curves in the domain

of ¢, andthere exists ¢ > 0, such that

(8) : |z - tGe) | > o

forall z « T and all real %, and such that

® o) = 5o 2 g wcx<w)
There is a sequence of i (p) (p) )
partitions of T, by points 20 5Z) seeesZy , such
P
that the functions g defined b);\I
(10) 9,0 =757 E e O RO}
2 - f(x) j -1

converge to ¢ (f(x)), as p - o,
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Choosing p and B so that " an“ < BBnMn and "f - zll <p for all

z ¢ T, Theorem 2.1 shows that

n 1 n
(1) ID™¢ 2 W<pB™M @20 .
Since ¢ is bounded on I and since Elz j(p) -z j(-;-)l) | does not exceed the length
of T, we see from (10) and (1) that

N n

(12) Io%s Il <p,B'M, (20 .
Lemma 2.2 now implies that
13) Io%e « 0l <p,B’M (20,

and this completes the proof.

III, PROOF OF THEOREM B,

3.1, LEMMA, Suppose {a(n)} is a sequence of positive numbers such that

{na(n)} is increasing but {a{n)} is not almost increasing. Then there exist

sequences of integers, {Si} and {mi}, both tending to ®, such that

a(s,) |
1)) a(misi) - (it - o) .
Proof, Put
(2) y(s) = sup{°(s) als) als) cee} .

a(s+l), a(s+2), a(s+3),
Since {a(n)} is not almost increasing, we have sup y(s) = o,
5

Since {a(n)} increases, we have
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(3) —als) m>1) .

a{ms) -~ m
Also, if s <n, then n=ms +t with 0<t<s, and so ao(ms) < na(n)/ms < 2a(n).

Thus a(s)/a(ms) > a(s)/2a(n), which gives

a(s) d
(4) ;u>pl a(ms) 2 2 Y(S) o

Since sup y(s) =®, (4) shows that (1) holds for some sequences {si},
{mi}; by (3) this is only possible if m, ~ .

If y(s) = », forall s, we can take for {si} any sequence tending to oo,
and then find {m-i} so that (1) holds. If y(so) < oo for some S then
inf a(n) > 0, and (1) implies that °(si) -~ ®, i,e,, that s, - o,

3,2 LEMMA, Suppose C{Mn} is non-quasianalytic and I is a closed interval

in the interior of a closed interval J on the real line, Then there exists a constant

B and a function h such that h(x) =1 on I, h{x) =0 off J, 0<h<l, and

(5) , D%l <pM_ (m=0,L,2,...) .

Proof. Put a_= Mn—l/Mn' Then {a_} decreases monotonically, and

Zan < o, There exists a monotonically decreasing sequence {bn} such that

‘ € -1 .
an/bn -+ 0 and an<°°. Put Mn —(blbz...bn) . Then

sk S * . . S
ZMn—l/Mn = an < o and {M rl} is logarithmically convex. Hence C{Mn}
is non-quasianalytic. Also,

. Y/n
M n a...a %
—n {1—-1= -~ 0 (- ),

M b,...b
n | 1 n

(6)

Since C{Mn} is non-quasianalytic, there is a function g e C{MZ} such
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that glx) =0 if x<0, glx) =1 if x >x, for some x,>0. Bang [1; p.55]

0 0

(see also Mandelbrojt [6; p. 103)) has indicated a very simple construction
which achieves this. Affine changes of variables(which do not affect the class
C{M*n}) then give functions hl, hz 3 C{M*n} such that h1 = 0 to the left of
T, h1 =1 on 1 and to the right of I, h2 = 0 to the right of J, h2 =1 on I

and to the left of I. Put h = hlhz’ Then h has the required properties, except

that (5) is replaced by
n - n %
(7) ID"nl <B M, (=0,1,2,...) ,

*
for some constant B., Setting B = max B"M n/Mn’ (6) shows that B < o, and
(7) shows that (5) holds,

3,3. We now turn to the proof of Theorem B, Put

(8) by = Mn/Mn+ (n=0,,2,...) .

1
By the Denjoy-Carleman Theorem, an < o, Replacing Mn A by ann , if
necessary, we may assume, without loss of generality, that

- 1
(9) Y, k<3

0

‘We define
s

(10) £ ) =p M_exp{ix/p.}  (s=0,1,2,...) ,

and note that

n,m n.m
(1) D(f)=(m/p )t (s,n20, m21) .
‘ s+l-n s=n
The convexity of {log Mn} shows that M, SMM_. i 0<n<s;

if s +1<n, we have similarly Mr;i < Mz-s‘—an. Thus the inequality
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s+l-n S-n
s = 'n s+l

A
<
£

(12) M

holds in all cases.

Applying (12) to (11), with m =1, we see that

n S$=n
(13) ID* I =, "M, < M (s,n20) .
In particular, taking n =0,
(14) N7 0= e Il <My =1 (620, m>1) .

By (9), we can place disjoint closed intervals Ik in (0,27) which contain

intervals I, in their interiors, with m(Ik) = 2mp,, and Lemma 3.2 shows that

there are functions hk and constants ﬁk-> k such that hk =1 on Ik’ hk
and
n
(15) Io"n, I <8 M, - (v,k20) .
Put a(0) =1 and define a(n) by
1/n
(16) na (n) = M n>1) .

By hypothesis, {An} is not almost increasing, By Stirling's formula, {u(n)/An}
is bounded above and below by positive numbers, Hence {a(n)} is not almost
increasing., Our standing assumptions on {Mn} (logarithmic convexity, and

Mg = 1) imply that {n a(n)} increases. Thus Lemma 3.1 applies, and there

s
are sequences {sk}, {mk}, tending to ®, suchthat s, >k, 2 ks B, » and

(17) -—ﬂ)—_ - (k - oo)
o.(mksk) *

=0 off J,,
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We extend the functions h, - fs , defined in (0, 2m), to be periodic,

k k
with period 2w, and define
(18) (=Y L onwe o .
k=0 Px K S
By (13), (15), and Leibnitz' formula, we have "Dn(hkfsk) I < ZnMn . The
functions h, have disjoint supports. Hence if g is any partial sum of the series

k

(18), we have ”Dng [ < ZnMn, and we conclude from Lemma 2,2 that
ID"|l <2™M . Thus feC {M_}.

= n P n

Since 0 is in the range of f, it is clear that f_l is not in C{Mn}' Fix
AN#0, put F=(-~- f/)\)-"l, and assume (this will lead to a contradiction) that

Fe C{Mn}. For some B < we then have

(19) D"l < 8°m_ (21 .

For large enough Kk, |k|pk> 1, Since hk =1 on Ik and hj =0 on

I, if j #k, we have

k
(20) Fx) =m2=0 (xpk)'mf";k(x) (xelL, kxki) .

By (11) and (14), the series (20) may be differentiated term by term any number

of times, since the resulting series converge uniformly on I Since s, >k,

k* k

we have p.sks e » SO that there is a point x, ¢ I atwhich exp {ix/p.s }>o0.
k

Differentiating (20) n times at Xy therefore gives

0
(21) DnF(xk) =" % (m/p )nlfs (xk)/kﬁkl\m ,
m=0 k k
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by (11). By (19), no term in the series (21) exceeds BnMn. Taking m = m,

and n = m, Sy, (10) shows therefore that

(22) —_k <B * *M k>k.) .

Taking nth roots in (22) and using (16), we obtain

/s /s

as, ) 1
k
<shs, |

—_ Kk
a(m,s,)

k

(23) < 2B\ .

The last term in (23) is bounded, as k - o, and this contradicts (17),
Thus (1 - f/)\)-l isnotin C {Mn} , and part (i) of Theorem B is proved.

Part (ii) is proved quite similarly, Suppose

s %
(24) $(z) = %cmzm ’ 0<cm<1, . m_o ,

and put g(x) = ¢(f(x)). On Ik we have, in place of (20),

00 [o] m
(20') gk = ), —-f . &),
m=0 B X |3
and we can choose X, ¢ Ik so that fs (xk) > 0. In place of (23) we obtain
k
(231 M —t:(_s’% <28 .
m, a(m, s,
Since ¢ Y/m <c V/ms , this gives
m m
1/m a(m s, )
(25) . k < 2B .__:Gk_)_li_ .
k k

/m
But {cm } cantendto 0 without satisfying (25), since the right side of (25)

tendsto 0 as k - o, by (16).

This completes the proof,
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IV. PROOF OF THEOREM C.
4,1, Let us now assume that C{Mn} is non-quasianalytic and inverse-closed.

By Theorem B, {An} is then almost increasing, and so is {an}, if

a_ = Ml/n n. Choose K sothat a_ <Ka_ if 5 <n,
n n s n

-1/ -
Since ZMnl’n < o (see §1.3), Z (nan) 1<°°. But

Y TSR S Y oL dign.
e sas - s Ko.n 2
n” “<s<n

The sum on the left tends to 0 as n—» o , hence an/log n -+ o , and this means
that C{Mn} contains C{(n log n)n} and therefore proves one half of Theorem C.
4.2, To prove the other half, we consider a function f g C{n log n)"}, and we
shall construct’a non-quaSianalytic class C{Mn}, with {an} increasing, such
that f ¢C{Mn}.

Since f ¢ C{(n log n)n}, either some derivative of f fails to be bounded,

in which case f belongs to no C{Mn }, or there is a sequence {ni} such that
‘n n
(1) D if” > (13ni log ni) i R

we can make {ni} increase so rapidly that

2
>
(2) no >R log (" log ni) .
Define
2
(3) ¢(n1) =n, log (i n, log ni)
and
(4) ¢(n) =a, +bn+nlogn (n, <n< ni-t-l) ’

where a, and bi are so chosen that the definitions of ¢(n) agree when
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2
(5) a, + bini =n, log (i~ log ni)

‘ 2
a +bn log ((i + 1) log .

1M1 T i ) .

1

From this we deduce that a, <0, and, via (2), that

2
‘ > i -
(6) bi log (i log ni+1) 1.
Now put M_ = exp {¢(n)}. If n<ns<n, then
(7 exp{~b.} < e/i2 log n
i i+l ?
and hence, by (6),
Mn nn
g =exe{em) - ol +1)} = exp {-b}e ——
n+l (n+l)
(8)
< = . (l+‘l)-n_1-'1' < 21 .

i logn n n ni logn

' i+l i+l
It follows that

n n
i+l M i+l
n-1 1 1 1
©) E-n Mo 2 L n <2z
n, n t"logn,, 0 ‘
so that C{Mn} is non-quasianalytic.
Next,

¢(n) ai

(10) a =5 —logn=bi+—rl‘ (nl._gns ni+1) ,

and since ai <0, {an} increases. We can also arrange our construction so that

bi+1 > bi , and then ¢ will be convex. (This is not really necessary, since
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the convergence of Z Mn/Mn assures the non-quasianalyticity of C{Mn}

+1
even without logarithmic convexity of {Mn}.)

By (1) and (3), f¢ C{Mn} » and the proof of Theorem C is thus complete.

4,3. THEOREM. The intersection of all non-quasianalytic classes C{Mn} is

the class C{n!}. (Our reason for including a proof of this result is stated in

§1.6.)

Proof. If An <A for some sequence {ni} tending to © and some constant
i

A, if fe C{Mn}, and if D"£(0) =0 for n = 0,1,2,..., then foreach x #0

there exists § = £(x, ni) such that

n, n, n, ni ‘
lt6a| = ID *t(e)x /ntl <188 "M x '/n1]
i

ni ni
»IBa x| "< lpl - max| *,
1

= |p

~where B, B depend on f. If |BAx| < 1, it follows that f(x) = 0. Hence
C{Mn} is quasianalytic.
Thus C{n!} is contained in every non-quasianalytic C{Mn}.
To prove the converse, suppose f ¢ C{n!}., Then there is a sequernce
{ni} such that
Dl > 6, *
and

2
>
Ny >0y log (i ni) .

Put ¢(ni) =n, log (izni), ¢(n) = a <n<n where

+bin ior n 41

i i

‘ 2
3, + bini =n, log (i ni)

a,+b n

TR RUTY )

. 2
L log ((i +1) L
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and define M = exp {¢(n)}. Asin § 4.2, we now have bi > log (12n1+1) -1,

hence
Mn _bi e
= < <n<
Mo ) i%n Bysnsng)
i+1
and
Pi41 "
2, M _ /M <iT
n,+1

i
Thus C{Mn} is non-quasianalytic, and since our definition of ¢ shows

that f fc{Mn}, the proof is complete.

V. MISCELLANEQUS RESULTS

5,1, THEOREM. Every non-quasianalytic algebra C{Mn} is contained in an

%
inverse-closed algebra C{M n}‘ which is minimal in the following sense; if

C{M;l} contains C{Mn} and if C{M'n} is inverse-closed, then C{M'n}

E3
contains C{M n}.

* * * *
Proof, Put A =maxA_ and M_=n!A . Since M_<M _ we have
—_—— s<n © n n n n

C{Mn}C C{M:}. Since {Ai} increases, C{M:} is inverse~-closed.
(Note that the proof of Theorem A made no use of logarithmic convexity.)

Now suppose C{Mn}C C{M'n} and C{M'n} is inverse-closed. Since
C{M'n} is non-quasianalytic, Theorem B shows that {A'n} is almost increasing,
where A.n = {M'n/n! }l/n . Hence there are constants X\, K, such that
M < )\nM'n and A's < KA'n if s<n. This implies A_< )\KA'n, hence

% ' % n, s ‘ * '
A SMA , hence M < (\K) M , and thus c{m yC cim } .
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5,2, THEOREM. There exist non—-quasianalytic algebras C{Mn} which

contain no inverse-closed non-quasianalytic C{M'n‘}'

Proof., Theorem 4.3 shows that there is a non-quasianalytic C{Mn} such that

Mn
i

ni log ni

for some sequence {ni}. If C{M'n}C C{Mn}, it follows that C{M'n} does
not contain C{(n log n)n}, and hence Theorem C shows that C{ M'n} cannot
be both inverse-closed and non-quasianalytic.

5.3. COMPLEX HOMOMORPHISMS OF Cp{Mn}.

Since we are investigating certain function algebras, it is appropriate to
study their maximal ideals and the complex homomorphisms which exist on them,
‘We restrict ourselves to the algebras Cp{Mn}, for simplicity, for then we are
dealing with functions on the circle T, i.e., on a compact space.

If Cp{Mn} is inverse-closed, there are no problems. For each x ¢ T,
let Ix be the set of all f ¢ Cp{Mn‘} which vanish at x. Then Ix is clearly
a maximal ideal in Cp{Mn}. Conversely, assume I is a maximal ideal different
from every I . For each x, there is a function f eI such that fx(x) # 0, and
the compactness of T shows that there are points KygeoorX, such that
g = i fx:l -fx > 0. But g eI, and since Cp{Mn} is inverse-closed {(by

1

i
assumption), we have 1 ¢ I, hence I = Cp{Mn}. We summarize:

If Cp{Mn} is inverse-closed, then every maximal ideal I in C‘p{Mn}

is of the form I = Ix’ and every complex homomorphism 1 of Cp{Mn} is of

the form y(f) = f(x), for some x ¢ T.
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(By a complex homomorphism of Cp{Mh} we mean a multiplicative
linear functional which maps Cp{Mn} onto the complex field, We make no
continuity assumptions, Indeed, we have not introduced a topology in Cp{Mn}.)

If Cp{‘Mn} is not inverse-closed, then, on the other hand, there do also
exist other maximal ideals, For if f e Cp{Mn}, if f hasno zeroon T, and
if 1/f {Cp{Mn}, then f generates a proper ideal in Cp{Mn} which, by
Zorn's lemma, is contained in a maximal ideal I; since f e I, I is different
from Ix for all x e T.

It is nevertheless conceivable that all compléx homomorphisms are of the
form Y(f) = f(x) for some x e T, so that the quotient algebras Cp{Mn}/I are
different from the complex field, whenever I is not one of the ideals Ix'

‘We shall now prove that this conjecture is true, under the additional
assumption that Cp{Mn} is non-quasianalytic and that log Mn = O(nz). We
divide the proof into several steps. Our growth condition will only be used at
the end.

‘We consider a fixed Cp{Mn}, and a fixed complex homomorphism { of
c {M).

(1) There is a point Xg €T such that y(f) = 0 forall fe Cp{Mn} _which vanish

near X, (i.e., in a neighborhood of xo).

For if there is no such point, the compactness of T shows that there are
segments V,,... ,Vm and functions fl’ ceey fm such that fi =0 on Vi but
q‘;(fi) =1, Putting f = f1 fm, we have f =0, (f) = Lp(fl) Lp(fm) =1,

and hence Y(0) =1, a contradiction.

For simplicity, we assume from now on that X, = 0.
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(1) Suppose f ¢ Cp{Mn} and f(x) =x near 0. Then u(f) = 0.
Proof, Put Y(f) = a. If a # 0, then there exists g ¢ Cp{Mn} such that
glx) = (x - u)"l near 0; this is so since (x - u.')-l is analytic near 0, and
we can multiply by one of functions h constructed in Lemma 3, 2.

Then (f - a)eg =1 near 0, and (i) shows that Wy(f - a)y(g) =1. But

Y(f - a) = Y(f) - a = 0, a contradiction,

(ii1) If fe C{M_}, £(0) = 0, and g{x) = £(x)/x, then g « c{m .}
Proof. Repeated differentiation of the equation £(x) = xg(x) yields
Dn+1f(x) = an+lg x) + (n + 1)Dg(x) (n>0) .

As le - © Dng(x) - 0, and Dn+1g(x) =0 at every local maximum of
ID"gl. Hence [ID%g| < D™ I .
(iv) If fe Cp{Mn} and £(0) = 0, then Y(f) =0,
Proof, There are functions g, h e Cp{Mn} such that g =1 near 0, the
support of g liesin [~w+ §, w- 8] for some & >0, and h(x) =x on
the support of g.

Put F =fg/h. Since h=x whére fg # 0, F =fg/x. Since fg ¢ Cp{Mn},
(iii) shows that F e C‘p{Mn-l-l‘}' But if log M = O(nz), then C{Mn+1} =C{Mn}
[}; p.22]. Thus F e Cp{Mn}.

By (1), ¥(g) =1; by (ii), (h) =0. Hence y(f) = Y(f)y(g) = Y(fg) = Y(Fh)
= Y(Fp(h) =0,

‘We now summarize the result:;

THEOREM. lf_ Cp{Mn} is non-quasianalytic, if log Mn = o(nz), and if ¢ is
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a complex homomorphism of Cp{Mn}, then y(f) = f(x) for some x eT.

We conclude with the remark that there exist non-quasianalytic algebras
C{Mn} which are not inverse-closed and which fail to satisfy the condition
log M_ = O(nz). (In fact, if o -+ ® and if )\n/nl -+ o, the technique used
in the proof of Theorem 4, 3 allows us to construct non-quasianalytic C{Mn}
such that M >, for infinitely many n, and also M_< A, for infinitely

many n.) For these algebras we do not yet know all complex homomorphisms.
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